

Preprocessing of P6-AWiFS for Field Level Data Extraction and Data Mining

Dr. Jim Hipple
Remote Sensing & GIS Advisor
USDA Risk Management Agency
Office of Strategic Data Acquisition & Analysis

About the Risk Management Agency

- role is to help producers manage their business risks through effective, market-based risk management solutions
- promote, support, and regulate sound risk management solutions to preserve and strengthen the economic stability of America's agricultural producers
- operates and manages the Federal Crop Insurance Corporation (FCIC)
- provides crop insurance to American producers through 16 private-sector insurance companies sell and service the policies.

FY 2005 Program Size

Number of Policies	1.19 million
Premium Volume	\$3.95 billion
Crop Value Insured \$	44.29 billion*
Acres Insured	246 million
Data accurate as of January 16,	2006

- RMA develops and/or approves the premium rate, administers premium and expense subsidy, approves and supports products, and reinsures the 16 companies
- sponsors educational and outreach programs and seminars on the general topic of risk management

Purpose & Goal

- take the best pieces of the scientific work done on AWiFS by ANTRIX, USDA, USGS, NASA, and GeoEye for operational agency use
- RMA/SDAA has an extensive KDD/Data Mining operation used to analyze patterns in crop insurance policies for increasing program integrity
 - Center for Agribusiness Excellence; Tarlton State University;
 Stephenville, TX
- the purpose is to develop automated / semi-automated procedures to incorporate moderate resolution satellite imagery into the KDD/Data Mining process
- the goal is to be able to provide field-level metrics throughout the growing season on crop health

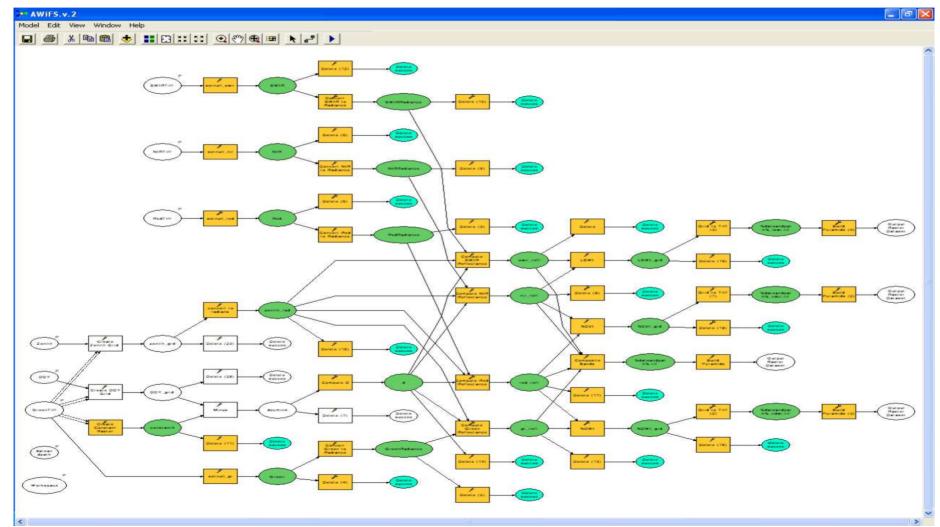
Process

- develop automated / semi-automated procedures to preprocess IRS AWiFS (and other satellite data)
 - preprocessed to Top-of-Atmosphere-Reflectance
 (TOA) or % reflectance
 - no correction for atmospheric scattering or absorption, atmospheric gases (water vapor and ozone) and aerosols
 - TOA selected because it is a quick, low/no cost implementation with little other inputs needed & can work within our environment

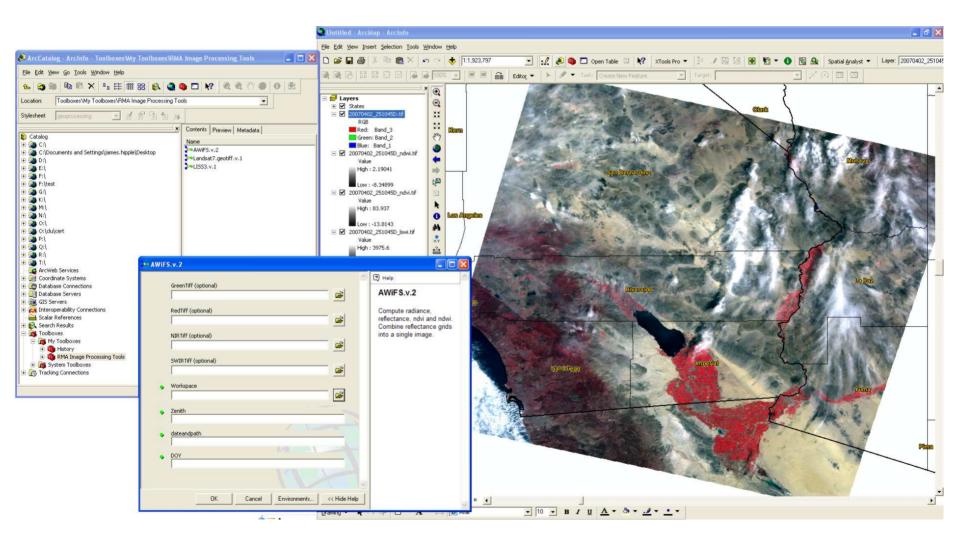
Process, cont.

- after AWiFS is preprocessed, extract data for each unique field
 - field information: USDA FSA Common Land Unit (CLU)
 - constrains: size (given each AWiFS pixel is approximately 0.70 acres), shape of field
 - data table by day of year for NDVI, NDWI, LSWI with mean
 & variance measure captured for each field
- data in 8-bit format, rather than 10-bit
- orthorectified data usually available to RMA from USDA Satellite Image Archive within 1 day (at most, 2 days) after acquisition

Preprocessing Implementation


Preprocessing Implementation

- developed in ESRI ArcCatalog ModelBuilder
- straightforward processing
- model could be used across USDA
 - ArcGIS on almost every desktop
 - COTS image processing software ENVI, Erdas Imagine, ER Mapper, etc. highly varied
- distributed as a ToolBox
 - developed for AWiFS geotiff, but is being adapted for Landsat 7 ETM+ geotiff, Landsat 7 ETM+ geotiff, IRS ResourceSat LISS-3 geotiff


Model Builder Preprocessing ToolBox

Process and Results

DN to Radiance to Reflectance

DN to Radiance Step

- NASA SSC derived calibrations $Q_{calDN(\lambda)}$:
- the following 2006 derived values were used

- Green Radiance =
$$DN_{10} * (0.60) + (-5.49)$$

= $DN_8 * (2.367) + (-24.311)$
- Red Radiance = $DN_{10} * (0.49) + (-1.55)$

$$= DN_8^{*} * (1.96) + (-6.281)$$

- NIR Radiance =
$$DN_{10} * (0.32) + (-2.38)$$

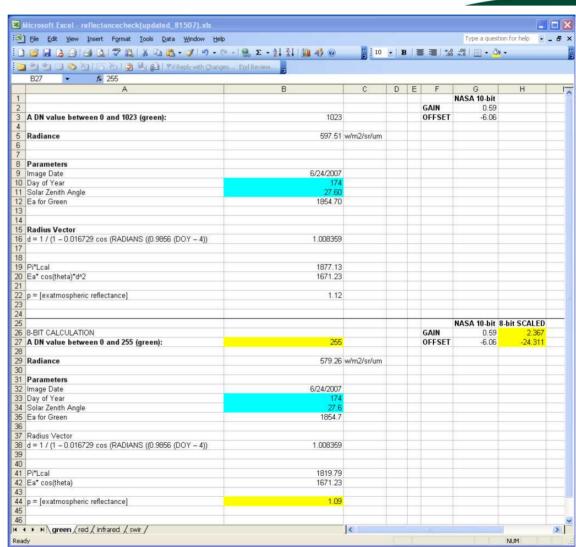
= $DN_8 * (1.284) + (-9.548)$

- SWIR Radiance =
$$DN_{10} * (0.063) + (-2.88)$$

= $DN_8 * (0.253) + (-11.55)$

From: M. Pagnutti. Initial Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques. *USDA FAS/PECAD Seminar*. September 12, 2006., and M. Pagnutti & K. Holekamp. Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques. *JACIE Civil Commercial Imagery Evaluation Workshop*. March 21, 2007.

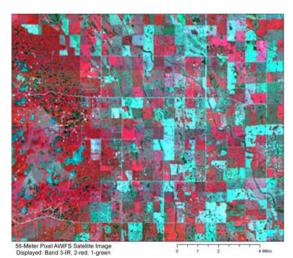
Radiance to Reflectance Step

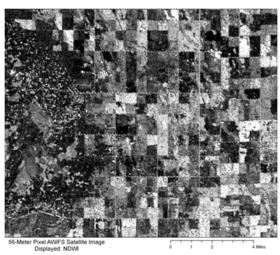

- $\rho = (L_{cal(\lambda)}/d^2) E_{a(\lambda)} \cos \theta_a$
 - ρ : percent reflectance
 - $L_{cal(\lambda)}$: TOA radiance for a particular wavelength (band)
 - $E_{a(\lambda)}$: sensor solar exoatmospheric irradiance in (W m⁻² µm⁻¹) for a particular wavelength (band)
 - d : radius vector
 - ratio of mean sun-earth distance
 - $d = 1/(1 0.016729 \cos(0.9856 (DOY 4)))$ $[d = 1/(1 - 0.016729 \cos(RADIANS ((0.9856 (DOY - 4))))]$
 - DOY = 1 to 365/366
 - θ_a : solar zenith angle (extracted from geotiff header) radius vector
- Parameter: $E_a(\lambda)$ sensor solar exoatmospheric irradiance in (W m⁻² μ m⁻¹)
 - B2: $1849.5 \text{ W m}^{-2} \,\mu\text{m}^{-1}$
 - B3: 1553.0 W m⁻² μm⁻¹
 - B4: 1092.0 W m⁻² μ m⁻¹
 - B5: 239.52 W m⁻² μ m⁻¹

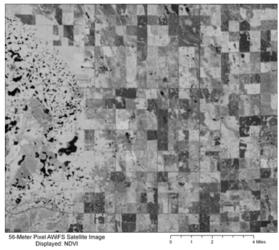
From: M.R. Pandya et al, *IEEE*Transactions on Geoscience and
Remote Sensing, vol. 40, No. 3, pp.714-718, 2002.

Quality Control of Model Builder Results

- equations verified in MS Excel
- calculated 10-bit and 8-bit values
- effects of 'binning' to 8bit from 10-bit can be seen in radiance & reflectance values
- served as an 'validation check' of randomly selected pixels in the ESRI ModelBuilder


Naming Conventions

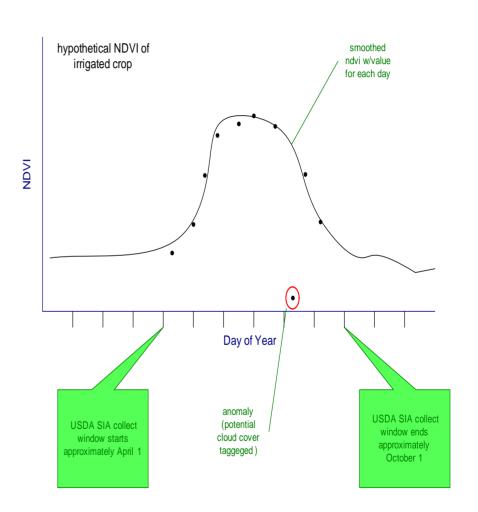

- pull from CDINFO (or CDINFO.txt) (structure of data of the downloaded AWiFS)
- process names the files in this manner:
 - yyyymmdd_ppprrrqxxxx.tif
 - yyyy = year
 - mm = month
 - dd = day
 - ppp = path
 - rrr = row
 - q = quad(A, B, C, D)
 - xxxx = index type (ndvi, ndwi, lswi)
- example: 2007518_263040b.tif; 2007518_263040b(ndvi).tif; 2007518_263040(ndwi).tif


Derived Products

4-band layer-stacked geotiff in % reflectance with pyramids built

Normalized Difference Water Index

Normalized Difference Vegetation Index



Land Surface Water Index (LSWI)

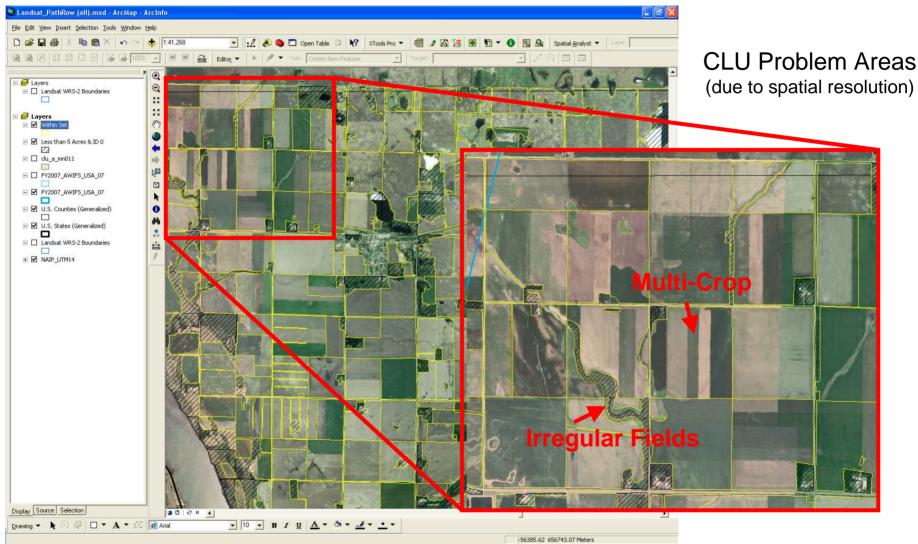
Indices Generated

RMA

- calculate vegetation index
 - ND<u>V</u>I (Normalized Difference Vegetative Index)
 - NDVI = (nir red)/(nir + red)
- calculate water index
 - ND<u>W</u>I (Normalized Difference Water Index)
 - NDWI = (red green) / (red + green)
- calculate land surface water irrigated / non-irrigated differentiator
 - LSWI (Land Surface Water Index)
 - LSWI = (nir swir)/(nir + swir)

Status

- ModelBuilder complete for AWiFS & LISS
- under development for Landsat 7 ETM+ geotiff and Landsat 7 ETM+ geotiff
- 80% of 2007 US scenes AWiFS scenes processed (by West Virginia University National Geospatial Development Center / NRCS under CREDA)
- 2006 US scenes being copied by USDA SIA & will be turned over to West Virginia University National Geospatial Development Center / NRCS for processing
- single AWiFS scene takes 15 minutes to process (requires user input), working on automating the ModelBuilder so images can be batched



Extraction of Field Level Metrics (development ongoing)

CLU and Field Selection

Metric Extraction & Future Direction

- working on the metric extraction procedure
 - select CLU that meet criteria of minimum size, shape
 - select CLU set that is within new image AWiFS footprint
 - calculate mean & variance values for indices & spectral bands for pixels within field boundary
 - develop 'running' smoothing procedure to fill in gaps
 - try to do this real-time or near real time
- look at near real time classification of crop-type cover on a per field basis
 - validate 2006 & 2007 with NASS Cropland Data Layer

Thanks To ...

- West Virginia University National Geospatial Development Center / NRCS (Jim Thompson, Henry Ferguson & Amanda Moore) for assistance on the AWiFS processing
- Bob Tetrault & Brad Doorn for assisting in streamlining data delivery through the USDA SIA
- the staff at ASRC, Global Marketing Insights, Inc. for putting together this forum

Questions ...

• Dr. Jim Hipple, USDA Risk Management Agency james.hipple@rma.usda.gov

Hipple, J. "Preprocessing of P6-AWiFS for Field Level Data Extraction and Data Mining." ASCR Management Services & USDA FAS Forum on ResourceSat Real Product Innovations. Greenbelt, MD. November 27, 2007.